麦肯锡的 Lilli 案例为企业 AI 市场提供了哪些发展思路?
撰文:Haotian
麦肯锡的 Lilli 案例为企业 AI 市场提供了关键发展思路:边缘计算 + 小模型潜在的市场机会。这个整合了 10 万份内部文档的 AI 助手,不仅获得了 70% 员工的采用率,而且平均每周使用 17 次,这种产品粘性在企业工具中实属罕见。以下,谈谈我的思考:
1)企业数据安全是痛点:麦肯锡 100 年积累的核心知识资产以及一些中小企业积累的特定数据都有极强数据敏感性,都不是和在公共云上处理。如何探索一种“数据不出本地,AI 能力不打折”的平衡状态,就是实际市场刚需。边缘计算是个探索方向;
2)专业小模型会取代通用大模型:企业用户需要的不是"百亿参数、全能型"的通用模型,而是能精准解答特定领域问题的专业助手。相比之下,大模型的通用性与专业深度之间存在天然矛盾,企业场景下往往更看重小模型;
3)自建 AI infra 和 API 调用的成本平衡:尽管边缘计算和小模型的组合虽然前期投入较大,但长期运营成本显著降低。试想若 45000 名员工高频使用的 AI 大模型来自于 API 调用,这产生的依赖,使用规模和品论的增加都会使得自建 AI infra 成为大中型企业的理性选择;
4)边缘硬件市场的新机会:大模型训练离不开高端 GPU,但边缘推理对硬件的要求则完全不同。高通、联发科等芯片厂商针对边缘 AI 优化的处理器正迎来市场良机。当每个企业都想打造自己的"Lilli",专为低功耗、高效率设计的边缘 AI 芯片将成为基础设施的必需品;
5)去中心化 web3 AI 市场也同步增强:一旦企业在小模型上的算力、微调、算法等需求被带动起来,如何平衡资源调度就会成为问题,传统的中心化的资源调度会成为难题,这直接会给 web3AI 去中心化小模型微调网络,去中心化算力服务平台等等带来很大的市场需求;
当市场还在讨论 AGI 的通用能力边界时,更喜闻乐见看到很多企业端用户已经在挖掘 AI 的实用价值。显然,相比过去比拼算力、算法的资源垄断式跃进,当市场把重心放到边缘计算 + 小模型方式时,会带来更大的市场活力。
(责任编辑:发现基金)
-
最后,申请材料经审查核准通过后,需要携带准予设立登记通知书、法人股东身份证原件,到工商局领取营业执照。...[详细]
-
因此,对于购物女性购物网站或者其他行业女性偏爱的网站这种颜色对于把握女性心理不可或缺。...[详细]
-
在国内,BAT等巨头占有者最大的用户群与数据,它们可以用深度学习的算法,在大数据的基础之上,更好的应于广告的推荐以及内容平台的信息流算法推荐。...[详细]
-
document.writeln('关注创业、电商、站长,扫描A5创业网微信二维码,定期抽大奖。...[详细]
-
2015年全世界域名交易的前100强里,按照交易金额排名,里边就有摩拜们购买的mobike.com,这已经在为国际化做准备。...[详细]
-
而对米哈游来说,米哈游的《崩坏学园2》通过B站在二次元人群的影响力吸纳到了更多核心粉丝。...[详细]
-
10年前,“用QQ的都是屌丝,白领用MSN”,没几年,屌丝、白领都在用QQ和微信。...[详细]
-
记得张小龙好像说过,好的游戏应该是玩完即走的。...[详细]
-
7、如何跟踪应用内购买 使用第三方平台,并在APP中设置相关自定义归因代码,以跟踪用户在苹果竞价广告里安装应用后所做的一些操作。...[详细]
-
这样的情况下,不管是短信服务商还是创业者都没有关注到短信验证码最重要的一点——速度。...[详细]